CURRICULUM

REGULATIONS - 2015

M.PHIL MATHEMATICS – CURRICULUM (FROM 2015-16 ONWARDS)

Semester	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	ZMA101	Research Methodology	4	4	0	8
	ZMA102	Algebra	4	4	0	8
I	ZMA103	Analysis	4	4	0	8
		Total				24

Semester	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Code					
	ZMA201	Advanced Graph Theory (Guide Paper)	4	4	0	8
	ZSW202	Teaching Learning Skills	1	2	0	2
Π	ZMA203	Thesis/Dissertation/ Project Work – Phase I	0	0	0	6
		Total				16

Semester	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	ZMA301	Thesis/Dissertation/ Project Work – Phase II	0	0	0	10
ш		Total				10

Total Number of Credits : 50

Semester I

	URSE (ZMA 1(COURSE NAME RESEARCH METHODOLOGY	L 4	T 4	Р 0	C 8	
C	P	A	KESEARCH METHODOLOGI	-	-	U	0	
					-	~		
4	0	0		L	Τ	Р	H	
				4	8	0	12	
PRE	REQU	ISITE: H	Basic Statistics			<u> </u>	<u>.</u>	
τοι	J RSE O	UTCON	AES:					
	rse outo			Domaiı		evel		
CO1	: Defin	e and Ex	plain data collection and thesis writing.	Cogniti	ve R	ememb	ering	
					U	ndersta	inding	
CO2	: Apply	v the co	ncept of testing of hypothesis and solve the	Cogniti	ve A	pplying	5	
probl	lems.						-	
CO3: <i>Apply</i> the concept of CPM/PERT, Transportation problem, Cognitive						Applying		
			sequencing problem and solve the problems.	U		11 2 0		
1 10012	Siment	problem,	sequeneing problem and solve the problems.					
CO4	: Defin	e and Ex	plain steps of algorithmic research and design	Cogniti	ve R	ememb	ering	
ofex	perimer	nts			U	ndersta	nding	
CO5	: Defin	e and Ex	plain pedagogy and teaching skill and	Cogniti	ve R	ememb	ering	
diffe	rence be	etween te	eaching and instruction.		U	ndersta	inding	
UNI	TI RE	ESEARC	CH METHODOLOGY	L	l		24	
Thes	is at Te	ertiary le	Process, Data Collection – Primary Data, Seconvel – Writing, Planning the thesis – the genera appendix.	,, J				
UNI	ГИΊ	EST OF	FHYPOTHESIS				24	
	• •		oncerning means, propositions, variances, Chi Squ			dness o	of	
Fit te	est. Non	-Paramet	ric Tests: One sample tests, Two sample tests, K-s	sample te	ests.			
UNI	ГШ	OPERA	TIONS RESEARCH				24	
CPN	//PERT	Analysi	s, Transportation Problems, Job Sequence Problem	ns, Assig	nment	Proble	ms.	
UNI	T IV A	LGOR	THMIC RESEARCH				24	
			problems – Types of solution procedure – steps of	of Develo	opmen	t of Al	i	
-			m Research – Design of Experiments and Con		-		-	
- 30						-0		

UNIT V PEDAGOGY AND TEACHING SKILL

Instructional Technology: Definition, Objectives and Types – Difference between Teaching and Instruction – Lecture Technique: Steps, Planning a Lecture, Delivery of a lecture – Lecture with power point presentation – Teaching skill: Definition, Meaning and Nature – Types of Teaching skills: Skill of Set Induction, Skill of Stimulus Variation, Skill of Explaining, Skill of Probing Questions, Skill of Black Board writing and Skill of Closure – Integration of Teaching Skills.

	LECTURE	TUTORIAL	TOTAL
	60	60	120
R	EFERENCES	S	

- "Thesis & Assignment Writing" By Anderson, Berny H. Dujrston, H. Pode, Wiley Eastern Ltd., New Delhi, 1970.
- 2. "Operations Research" An Introduction by H.A. Taha Collier Macmillan International Edition, 1982.
- Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, "Introduction to algorithms" Prentice Hall 1990.
- 4. "Research Methodology" R. Panneerselvam, PHI, New Delhi 2005.
- Mangal, S.K. (2002) Essential of Teaching Learning and Information Technology, Tandon Publications, Ludhiana.
- Michael D. and William (2000), Integrating Technology into Teaching and Learning: Concepts and Applications, Prentice Hall, New York.
- 7. Pandey S.K. (2005) Teaching Communication, Commonwealth Publishers, New Delhi.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1
Total	15	10			5	5	5	5	5
Scaled value	3	2			1	1	1	1	1

TABLE 1: COs VS POs Mapping

1- Low, 2- Medium, 3 – High

COU	RSEC	ODE	ZMA 102	L	Т	P	С
COU	RSE N	AME	ALGEBRA	4	4	0	8
PREI	REQUI	SITE	BASIC CONCEPTS OF COMMUTATIVE				
			ALGEBRA				
C	Р	Α		L	T	Р	Н
4	0	0		4	8	0	12
COU	RSE O	UTCO	MES	DOMAIN	LF	EVE	L
			concepts of modules and understand the key in this modules.	Cognitive			nbering standing
							nbering standing
	-	ain the	concepts of Tensor Products, Modules over a ain.	Cognitive	Un	ders	standing
CO4: numb		e and r	recognize the basic properties of the rings of real	Cognitive	Remembering Understanding		
CO5:	Usin	g the	concepts Primary decomposition, Noetherian	Cognitive	Ap	ply	
rings,	Module	es and A	Apply the theorem in a correct mathematical way.				
UNIT	'I					1	2
Modı	iles: M	odules	- Homomorphisms and exact sequences – Free mod	lules			
UNIT						1	2
Modı	iles: Pr	ojectivo	e and Injective modules- Homo and Duality				
UNIT Modu		ensor P	roducts- Modules over a principal ideal domain			1	2
UNII						1	2
Com	nutativ	ve Ring	s and Modules: Chain conditions – Prime and Prin	nary idelas			
UNIT	V O	RDINA	ARY DIFFERENTIAL EQUATIONS AND APP	LICATIONS	5	1	2
Com	nutativ	ve Ring	s and Modules: Primary decomposition- Noetheri	an rings and I	Mod	ules	

LECTURE	TUTORIAL	TOTAL
60	60	120
TEXT BOOKS		
1. Thomas W. Hungerford, "Algebra", Springer - Verlag		
UNIT-I- 4.1- 4.2, UNIT-II- 4.3 – 4.4, UNIT-III - 4.5 - 4.6,UNIT-IV –	- 8.1- 8.2, UNIT	-V - 8.3 - 8.4
REFERENCES		
Fraleigh, J.B., A First Course in Abstract Algebra, Narosa Publishi	ng House	
E REFERENCES		
1. NMEICT repository		
a) <u>http://www.math.iitb.ac.in/~srg/Lecnotes/AfsPuneLecNotes.pd</u>	<u>f</u>	
b) <u>http://www.math.iitb.ac.in/~srg/Lecnotes/comma`lg_des.html</u>		
c) http://people.brandeis.edu/~igusa/Math205bS10/Math205b_20	<u>10Sp.html</u>	

COURSI	COURSECODEZMA 103				L	Т	P	С	
COURSE NAME ANALY			ANALYSIS		4	4	0	8	
PREREC	PREREQUISITE								
C P A				L	T	Р	Н		
4	0	0			4	8	0	12	
COURSE	COURSE OUTCOMES			DOMAIN	LE	LEVEL			
of positive	CO1: Define Simple functions and Find Integration of positive functions and Integration of complex					mem derst		0	
functions.	functions. Explain role played by sets of measure zero								
and Topol	ogical prelim	inaries							
CO2: Ex	plain The R	iesz representat	tion theorem,	Cognitive	Re	mem	beri	ng	

Г

Unit-V Banach Space Banach spaces – Consequences of Baire's theorem approach to the Poisson integral. TEXT BOOKS Walter Rudin, Real and Complex Analysis, 3^{rd} ec Chapter 1: 1.1 6, 1.1 7, 1.22 – 1.41 Chapter 2: 2.3 – 2.4 Chapter 3: 3.1 – 3.17 Chapter 4: 4.1 – 4.26 Chapter 4: 4.1 – 4.26 Chapter 5: 5.1 – 5.10, 5.16 – 5.25 REFERENCES 1. H.L. Royden, Real Analysis (4th edition), 1 E REFERENCES	LECTURE 60 lition, Tata M	TUTO 60 cGraw – I	RIAL Hill	TOTAL 120
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem approach to the Poisson integral. TEXT BOOKS Walter Rudin, Real and Complex Analysis, 3^{rd} ec Chapter 1: 1.1 6, 1.1 7, 1.22 – 1.41 Chapter 2: 2.3 – 2.4 Chapter 2: 2.3 – 2.4 Chapter 3: 3.1 – 3.17 Chapter 4: 4.1 – 4.26 Chapter 4: 4.1 – 4.26 Chapter 5: 5.1 – 5.10, 5.16 – 5.25 REFERENCES 1. H.L. Royden, Real Analysis (4th edition), 1	LECTURE 60 lition, Tata M	TUTO 60 cGraw – I	RIAL Hill	- An abstract TOTAL 120
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem approach to the Poisson integral. TEXT BOOKS Walter Rudin, Real and Complex Analysis, 3^{rd} ec Chapter 1: 1.1 6, 1.1 7, 1.22 – 1.41 Chapter 2: 2.3 – 2.4 Chapter 3: 3.1 – 3.17 Chapter 4: 4.1 – 4.26 Chapter 5: 5.1 – 5.10, 5.16 – 5.25 REFERENCES	LECTURE 60 lition, Tata M	TUTO 60 cGraw – I	RIAL Hill	- An abstract TOTAL 120
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem approach to the Poisson integral. TEXT BOOKS Walter Rudin, Real and Complex Analysis, 3^{rd} ec Chapter 1: 1.1 6, 1.1 7, 1.22 – 1.41 Chapter 2: 2.3 – 2.4 Chapter 2: 2.3 – 2.4 Chapter 3: 3.1 – 3.17 Chapter 4: 4.1 – 4.26 Chapter 5: 5.1 – 5.10, 5.16 – 5.25	LECTURE 60	TUTO 60	RIAL	– An abstract TOTAL
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem approach to the Poisson integral. TEXT BOOKS Walter Rudin, Real and Complex Analysis, 3 rd ec Chapter 1: 1.1 6, 1.1 7, 1.22 – 1.41 Chapter 2: 2.3 – 2.4 Chapter 3: 3.1 – 3.17 Chapter 4: 4.1 – 4.26	LECTURE 60	TUTO 60	RIAL	– An abstract TOTAL
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem approach to the Poisson integral. TEXT BOOKS Walter Rudin, Real and Complex Analysis, 3 rd ec Chapter 1: 1.1 6, 1.1 7, 1.22 – 1.41 Chapter 2: 2.3 – 2.4	LECTURE 60	TUTO 60	RIAL	– An abstract TOTAL
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem approach to the Poisson integral. TEXT BOOKS Walter Rudin, Real and Complex Analysis, 3 rd ec Chapter 1: 1.1 6, 1.1 7, 1.22 – 1.41	LECTURE 60	TUTO 60	RIAL	– An abstract TOTAL
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem approach to the Poisson integral. TEXT BOOKS Walter Rudin, Real and Complex Analysis, 3 rd ec	LECTURE 60	TUTO 60	RIAL	– An abstract TOTAL
Unit-V Banach Space Banach spaces – Consequences of Baire's theorer approach to the Poisson integral. TEXT BOOKS	LECTURE 60	TUTO 60	RIAL	– An abstract TOTAL
Unit-V Banach Space Banach spaces – Consequences of Baire's theorer approach to the Poisson integral.	LECTURE	TUTO		– An abstract TOTAL
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem	LECTURE	TUTO		– An abstract TOTAL
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem				– An abstract
Unit-V Banach Space Banach spaces – Consequences of Baire's theorem	n – The Hahn I	Banach Th	eorem -	
Unit-V Banach Space	n – The Hahn I	Banach Th	eorem -	
				24
				24
	8-11			
Inner products and linear functional – Orthogona	1 sets – Trigono	ometric se	ries.	27
Unit-IV Inner Product space	ipproxim			24
Convex function and inequalities – The L^p – space	es – Approxim	ation by co	ontinuo	
Unit-III The L ^p – spaces				24
The Riesz representation theorem – Regularity pr	operties of Bor	el measure	es – Leb	besgue measure
Unit-II The Lebesgue Integral		1	. .	24
		_		
functions – The role played by sets of measure ze				
Simple functions – Arithmetic in $[0,\infty]$ - Integration	ration of positi	ve functio	ns – Int	
Unit-I Abstraction Integration				24
Poisson integral.				
,				
Baire's theorem, The Hahn Banach Theorem and				standing
CO5: Explain Banach spaces, Consequences of	Cogni	ive	Reme	mbering
Orthogonal sets and Trigonometric series.			Under	stanunig
CO4: Explain Inner products and linear funct	ional, Cogni	live		mbering standing
				<u> </u>
function				
the L ^p – spaces, Approximation by continuous			Under	standing
	and Cognit	tive		mbering
CO3: Explain Convex function and inequalities				
CO3: Explain Convex function and inequalities				
measure CO3: Explain Convex function and inequalities				

2. http://people.brandeis.edu/~igusa/Math205bS10/Math205b 2010Sp.html

Semester II

COU	RSE CO)DE	COURSE NAME	L	Т	•	Р	С
Z	ZMA201		ADVANCED GRAPH THEORY (Guide Paper)	4	4		0	8
С	Р	A						•
4	0	0		L	T	1	Р	Η
				4	8		0	12
PREI	REQUIS	SITE:	L	<u>I</u>	<u>I</u>			<u>I</u>
COU	RSE OU	JTCC	MES:					
Cours	se outco	mes		Domain	1	Lev	vel	
CO1:	Define	and H	Explain connectivity in graphs	Cognitiv	/e	Rei	memb	ering
						Un	dersta	nding
CO2:	Apply	colorii	ng of graphs and solve problems in Vertex colorings	Cognitiv	ve	Ap	plying	Ş
and Ec	dge colou	ring						
CO3:	Define	and H	Explain planar graphs	Cognitiv	<i>v</i> e	Ap	plying	
CO4 :	Define	and I	Explain Ramsey Theory	Cognitiv	/e	Rei	memb	ering
						Un	dersta	nding
CO5:	Find di	fferer	t types of graph labelings for different types of	Cognitiv	/e	Rei	memb	ering
graph	S					Un	dersta	nding
UNIT	TI CON	NEC	TIVITY IN GRAPHS	<u>.</u>	<u>.</u> .			24
Vertex	connect	ivity –	Edge connectivity – Blocks – k-connected and k-edge c	onnected	grap	ohs –	- Netw	ork
flow p	oroblems.	-			-			
UNIT	C II CO	DLOR	ING OF GRAPHS					24

Vertex colorings and upper bounds – Brooks' theorem – Graphs with large chromatic number	er –
Turan's theorem - Counting proper colorings - Edge colouring - Characterization of line gr	aphs.
UNIT III PLANAR GRAPHS	24
Embeddings and Euler's formula – Dual graphs – Kuratowski's theorem – 5 colour theorem number.	n – Crossing
UNIT IV RAMSEY THEORY	24
The pigeonhole principle – Ramsey's theorem – Ramsey numbers – Graph Ramsey theory.	The characteristic
polynomial – Linear algebra of real symmetric matrices – Eigenvalues and graph parameters regular graphs.	s – Eigenvalues of
UNIT V GRAPH LABELING	24
Types of labeling – graceful labeling – harmonious labeling – odd graceful, even graceful, n	nagic labeling.
LECTURE TUTORIAL	TOTAL
60 60 TEXT BOOK:	120
IEAI DOOK.	
1. Douglas B. West, "Introduction to Graph Theory", Prentice Hall of India, Second Edition,	2002.
REFERENCES	
1. Bondy J. A, and Murty U. S. R., "Graph Theory", Springer, 2008.	
2. Balakrishnan R. and Ranganathan K., "A textbook of Graph Theory", Springer, 2012.	
3. Graham R.L., Rothschild B.L and Spencer J.H., "Ramsey Theory", Wiley Publishers, Sec	cond Edition,
1990.	
4. Biggs N., "Algebraic Graph Theory", Cambridge Tracts in Mathematics 67, Cambridge U	niversity
Press, 1994. MX8003 Algebraic Theory of Semigroups	
Press, 1994. MX8003 Algebraic Theory of Semigroups E REFERENCES	
~ · · ·	

COURSE CODE ZSW202			COURSE NAME	L	T 2	P 0	С
			TEACHING LEARNING SKILLS	1			2
С	Р	Α					
2	0	0		L	T	Р	Η
				1	2	0	3
PRE	REQU	ISITE:	Nil				<u> </u>
COU	RSE O	UTCO	MES:				
	rse outo			Domai		.evel	
CO1: Define and Explain the role of a teacher in different phases of					Cognitive Remen		
teach	ing.				U	Indersta	inding
CO2	: Defin	e and E	xplain various micro teaching skills.	Cognitive Re		emembering	
				Ũ		Understanding	
CO3	: Defin	e and E	xplain the Learning and different methods of			Remembering	
teaching.					Under		inding
CO4	• Defin	e and F	xplain the importance of teaching devices and	Cogniți	ve R	ememb	ering
techniques.			xplain the importance of teaching devices and	Coginti	Cognitive Rememberin Understandin		U
techi	iiques.				Ľ	nuersta	manng
CO5	: Apply	the con	cept and solve the problems using SPSS.	Cognitive A		Applying	
UNI	ΓΙ CO	ONCEP	T OF TEACHING				6
Teac	hing- a	n art o	a science? - Relationship between Teaching a	nd Learn	ing. A	Analysis	of th
conce	ept of T	Teaching	g - Teaching as a deliberately - planned process:	Analysis	in ter	ms of t	eachin
skills	- Gene	eral Moo	lel of instruction – Pre active, Interactive and Pos	t active -	phase	s and T	eacher
	n them.						
UNI	Г П S	KILLS	IN TEACHING				6
varia		nforcen	 need, procedure, cycle of operations and uses – nent, questioning, illustrating, explaining demonstr 		,		
UNIT III CONCEPTS OF LEARNING							6
Natu	re and i	importa	nce of learning – Individual differences in learnin	ng - Lear	ning (Curves-	Factor
influe	encing t	he learr	ing- theories of learning - Transfer of Learning- L	earning b	y Imit	ation.	
UNI	ги т	FCHN	IQUES OF TEACHING-LEARNING – LARG	E GROI	P		6
	I		LAND OF TREASURING - DAKO		/ #		

Lecturing - Place in Higher Education - Purposes served - Basic skills - Evaluation of Effectiveness. Demonstration - Video conferencing - Method of organizing - Advantages and disadvantages as a teaching learning process. Use of Audio Visual Aids – Importance - General Principles of use -Advantages and disadvantages.

Techniques of teaching-learning – Small group

Importance, Skills of using, Evaluation of Effectiveness of the following:

Group discussion - Collaborative learning - Seminar - Debate - Group investigation - Role play.

UNIT V INTRODUCTION TO SPSS

Introduction to SPSS - Data analysis with SPSS: general aspects, workflow, critical issues - SPSS: general description, functions, menus, commands - SPSS file management.

6

	LECTURE	TUTORIAL	TOTAL			
	10	20	30			
R	REFERENCES					

- 1. Davis, Irork (1971), The Management of learning, McGraw Hill, London.
- 2. Judith, I. (2008). Learners, learning and educational activity. London: Routledge.
- 3. Graham, R. (2008). Psychology: The key concepts. London: Routledge.
- Samuel, W. (2007). The intellectual and moral development of the present age. U.S: Kessing Pub Co.
- 5. Chobra, R. K. (2006). Elements of educational psychology. New Delhi: Arise Publishers.
- 6. Langer, J. and Applebee, A.N. (1987). How writing shapes thinking: A Study of Teaching and Learning, National Council of Teachers of English.
- Lindfors, J. (1984). How children learn or how teachers teach? A Profound confusion: Language Arts, 61 (6), 600-606.
- 8. Vygotsky, L.S. Thought and Language, Cambridge, MA: MIT Press, 1962.
- 9. Field A., Discovering Statistics Using SPSS, Fourth Edition, SAGE, 2013

Resource Websites:

- http://www.thirteen.org/edonline/concept2class/constructivism/index.html.
- www.ipn.uni-kiel.de/projekte/esera/book/b001-cha.pdf
- http://www.ericdigests.org/1999-3/theory.htm
- http://www.ncrel.org/sdrs/areas/issues/students/atrisk/at6lk36.htm
- http://saskschoolboards.ca/research/instruction/97-07.htm
- http://www.ed.psu.edu/CI/Journals/1998AETS/t1_7_freeman.rtf
- <u>http://en.wikipedia.org/wiki/Constructivist_teaching_methods</u>

-	http://www.ncrel	.org/sdrs/areas	/issues/envrnmnt/	/drugfree/sa3const.htm	

- http://vathena.arc.nasa.gov/project/teacher/construc.html
- http://www.grout.demon.co.uk/Barbara/chreods.htm
- <u>http://vathena.arc.nasa.gov/project/document/teacher.html</u>
- http://www.disciplineassociates.com/ClassroomDiscipline_101.aspx